Course Title (in English)	Research seminar "Modern Problems of Theoretical Physics"
Course Title (in Russian) | Научно-исследовательский семинар "Современные проблемы теоретической физики"
Lead Instructor(s) | Feigel'man, Mikhail

1. Annotation

Course Description
Research seminar "Modern Problems of Theoretical Physics" is supposed to teach students to read, understand and represent to the audience recent advances in theoretical physics. Each student is supposed 1) to choose one of recent research papers from the list composed by the instructor in the beginning of each term, 2) read it carefully, 3) present the major results of the paper to his/her colleagues during the seminar talk, 4) answer the questions from the audience about the content of the paper. The papers in the list are selected, normally, from the condensed matter theory and related fields, like: physics quantum computing, statistical physics, etc. The papers to the list are usually chosen from most competitive physics journals, like Nature Physics, Science, Physical Review Letters, Physical Review X and others.

Course Prerequisites
Student is supposed to have active knowledge of quantum mechanics, statistical physics, diagrammatic methods of quantum field theory

2. Structure and Content

Course Academic Level | Master-level course suitable for PhD students
Number of ECTS credits | 12

3. Assignments
4. Grading

Type of Assessment
- Graded

Grade Structure

<table>
<thead>
<tr>
<th>Activity Type</th>
<th>Activity weight, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Reports</td>
<td>100</td>
</tr>
</tbody>
</table>

Grading Scale

- A: 86
- B: 76
- C: 66
- D: 56
- E: 46
- F: 0

5. Basic Information

Attendance Requirements
- Mandatory with Exceptions

Maximum Number of Students

<table>
<thead>
<tr>
<th></th>
<th>Maximum Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall:</td>
<td>15</td>
</tr>
<tr>
<td>Per Group (for seminars and labs):</td>
<td></td>
</tr>
</tbody>
</table>

Course Stream
- Science, Technology and Engineering (STE)

Course Term (in context of Academic Year)

- Term 1
- Term 1A (first four weeks)
- Term 1B (last four weeks)
- Term 2
- Term 3
- Term 4

Course Delivery Frequency
- Every year

Students of Which Programs do You Recommend to Consider this Course as an Elective?

<table>
<thead>
<tr>
<th>Masters Programs</th>
<th>PhD Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical and Theoretical Physics</td>
<td>Physics</td>
</tr>
</tbody>
</table>
6. Textbooks and Internet Resources

<table>
<thead>
<tr>
<th>Web-resources (links)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>journals.aps.org</td>
<td></td>
</tr>
<tr>
<td>sciencemag.org</td>
<td></td>
</tr>
<tr>
<td>arxiv.org</td>
<td></td>
</tr>
</tbody>
</table>

7. Facilities

<table>
<thead>
<tr>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access to international physics journals</td>
</tr>
</tbody>
</table>

8. Learning Outcomes

Knowledge
Students will know new results from scientific literature in the broad field of condensed matter physics, theoretical and experimental.

Skill
Students will be able to analyze critically results of modern scientific publications and explain the content of those publications at professional level.

Experience
Experience to present scientific results to colleagues and experience to discuss with them controversial scientific subjects.

Do you want to specify outcomes in another framework?

Knowledge-Skill-Experience is good enough

9. Assessment Criteria

Select Assignment 1 Type
Report

Assessment Criteria for Assignment 1
1. Ability of student to analyze modern scientific publication in terms of its real content.
2. Ability of student to present the results of scientific publication in clear and critical form.
3. Ability of student to carry on the scientific discussion on the issues of the publication to be discussed.

10. Additional Notes