1. Annotation

Course Description

A research paper-based course. Overview of current research relating to various ‘hot topics’ in neurobiology and discussion of current research articles on the subject. Analysis of experiments and research described in scientific papers are presented by students and critically discussed by the class led by the instructor. Novel methods in neurobiology - optogenetics, molecular magneto technique, transparent tissues imaging will be discussed in depth. Topics include mapping of the brain and behavior, optogenetic manipulation of memory engrams, mouse models of Alzheimer disease, synaptic plasticity, dendritic spines morphology, pathology, and neurodegenerative diseases.

Course Prerequisites

Optional course. Course requires basic knowledge of molecular and cellular biology. Prior attendance of a Neuroscience course is highly desirable.

2. Structure and Content

Course Academic Level

Master-level
<table>
<thead>
<tr>
<th>Topic</th>
<th>Summary of Topic</th>
<th>Lectures (# of hours)</th>
<th>Seminars (# of hours)</th>
<th>Labs (# of hours)</th>
</tr>
</thead>
</table>
1. Imaging of transparent tissues
2. Iterative expansion microscopy
2. New approaches in electrophysiology
3. Optogenetics and its applications
 Cell culture and network analysis. Mapping of the brain and behavior. Applications for neurodegenerative
4. Other methods for controlling neuronal activity –
 Magnetogenetics, Chemogenetics.
5. Application of these methods for functional analyses of neuronal circuits.

3. Assignments

<table>
<thead>
<tr>
<th>Assignment Type</th>
<th>Assignment Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td>As homework, research papers are given for careful studying during the week before the seminar. Students prepare a Powerpoint presentation and present it in front of the class.</td>
</tr>
</tbody>
</table>

4. Grading

<table>
<thead>
<tr>
<th>Type of Assessment</th>
<th>Pass/Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade Structure</td>
<td></td>
</tr>
<tr>
<td>Activity Type</td>
<td>Activity weight, %</td>
</tr>
<tr>
<td>Projects</td>
<td>45</td>
</tr>
<tr>
<td>Final Project</td>
<td>10</td>
</tr>
<tr>
<td>Class participation</td>
<td>45</td>
</tr>
</tbody>
</table>

Grading Scale

<table>
<thead>
<tr>
<th>Pass:</th>
<th>80</th>
</tr>
</thead>
</table>

Attendance Requirements

Optional with Exceptions
5. Basic Information

Maximum Number of Students

<table>
<thead>
<tr>
<th>Maximum Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall:</td>
</tr>
<tr>
<td>Per Group (for seminars and labs):</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

Course Stream

- Science, Technology and Engineering (STE)

Course Term (in context of Academic Year)

- Term 1

Students of Which Programs do You Recommend to Consider this Course as an Elective?

<table>
<thead>
<tr>
<th>Masters Programs</th>
<th>PhD Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life Sciences</td>
<td></td>
</tr>
</tbody>
</table>

Course Tags

- Biotechnology

6. Textbooks and Internet Resources

<table>
<thead>
<tr>
<th>Required Textbooks</th>
<th>ISBN-13 (or ISBN-10)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Web-resources (links)</th>
<th>Description</th>
</tr>
</thead>
</table>

7. Facilities

8. Learning Outcomes
Knowledge

Modern techniques and methods in neurobiology

Skill

Ability to present and discuss experimental data

Ability to read scientific literature in broad area of neurobiology

Experience

Presentation in English

Design of experimental research in the neurobiology field

9. Assessment Criteria

Input or Upload Example(s) of Assignment 1:

Select Assignment 1 Type

Project

Input Example(s) of Assignment 1 (preferable)
Novel and Emerging Methods

Optogenetics

Imaging of transparent tissues

PolyQ neurodegenerative diseases

Alzheimer’s Disease

Memory Engrams

The quality of this short talk, analysis of research presented and critical
discussion by students are evaluated.
Students should be able to understand in details all the methods applied
in the article they are presenting during a seminar.
The following listed below are evaluated -

1. The ability to present and discuss experimental data.
2. The ability to critically assess data presented in the literature.
3. The ability to make a high-quality presentation in English.
4. Knowledge of modern techniques and methods in neurobiology
described in the article.

If all 4 criteria are satisfied student gets 2 points, if any 2 criteria are
satisfied – 1 point, if the student satisfies only 1 criterion or violates all 4
criteria his presentation is evaluated at 0 points.

In addition, active participation in the seminar is evaluated for the rest of
the class. If the student answers at least 2 question from the instructor or
the student making the presentation or if the student asks at least 2
correct questions he gets 1 point, if not – 0 (zero) points.

<table>
<thead>
<tr>
<th>Input or Upload Example(s) of Assignment 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input or Upload Example(s) of Assignment 3:</td>
</tr>
<tr>
<td>Input or Upload Example(s) of Assignment 4:</td>
</tr>
<tr>
<td>Input or Upload Example(s) of Assignment 5:</td>
</tr>
</tbody>
</table>

10. Additional Notes