1. Annotation

For each class, there will be a paper that two people will present to the rest of the class. We will go down to the details of experiments - how things were done and what do the data/figures really show, so be prepared to answer in-depth questions. Presenters will start by stating the name of the paper/main authors and telling the take home message of the paper - why it is significant, what problem it solved. Then they will proceed to the actual work. If there are methods/results mentioned in the paper that refer to prior work, you shall be prepared to answer questions about it too. The audience is supposed to read the paper being discussed beforehand and participate in discussions.

To pass, one would need to present a paper at least once during the module and actively take part in discussions of other papers. One absence is allowed no questions asked. Additional absences when unexplained will be a cause for no-pass grade. There will be a few home assignments. They must be submitted in time, typed—not written up—and done professionally (written in good language, be concise and free of spelling errors - consider them as part of academic writing exercises).

It is gonna be fun - students tend to like the seminar and its atmosphere :)

2. Structure and Content

Course Prerequisites
Molecular Biology theory and methods

Course Academic Level
Master-level course suitable for PhD students

Number of ECTS credits
3
3. Assignments

4. Grading

<table>
<thead>
<tr>
<th>Type of Assessment</th>
<th>Pass/Fail</th>
</tr>
</thead>
</table>
| Grade Structure | Activity Type: Attendance, Activity weight, %: 25
| | Activity Type: Homework Assignments, Activity weight, %: 25
| | Activity Type: Projects, Activity weight, %: 50 |

5. Basic Information

<table>
<thead>
<tr>
<th>Attendance Requirements</th>
<th>Mandatory with Exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Stream</td>
<td>Science, Technology and Engineering (STE)</td>
</tr>
<tr>
<td>Course Delivery Frequency</td>
<td>Every year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Students of Which Programs do You Recommend to Consider this Course as an Elective?</th>
<th>Masters Programs: , PhD Programs: Life Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Tags</td>
<td>Biotechnology</td>
</tr>
</tbody>
</table>

6. Textbooks and Internet Resources

7. Facilities

8. Learning Outcomes

Knowledge: Ability to read, comprehend, analyse, present, discuss and criticise primary scientific literature.

Skill: Ability to read, comprehend, analyse, present, discuss and criticise primary scientific literature, explain yourself and understand others.

Experience: Public presentation, asking questions, reading significant amounts of science papers on short notice.

Do you want to specify outcomes in another framework?

Knowledge-Skill-Experience is good enough

9. Assessment Criteria

10. Additional Notes