1. Annotation

Course Title (in English)	Intellectual Property, Technological Innovation and Academic Research
Course Title (in Russian) | Интеллектуальная собственность, технологические инновации и научные исследования
Lead Instructor(s) | Willoughby, Kelvin

Is this syllabus complete, or do you plan to edit it again before sending it to the Education Office? | The syllabus is a final draft waiting for form approval
Contact Person | Kelvin Willoughby
Contact Person's E-mail | kelvin@skoltech.ru

Course Description

Intellectual property (IP) is a critically important aspect of technological innovation and a key factor in the management of technology-intensive enterprises. Basic knowledge of intellectual property principles and practices is increasingly important for university researchers, and expertise in the management of intellectual property is a key skill set of technology leaders in both established corporations and entrepreneurial ventures.

Intellectual property affects not only technology commercialization strategy but also the direction of scientific research itself. University research groups increasingly compete with each other for scientific reputation and access to resources on the basis of their ability to obtain patent protection for the practical applications of their research; but also on the basis of their ability to plot research pathways to maneuver around the “proprietary territory” of other research groups. Skill in using IP data bases, and associated analytical tools, can empower university scientific teams to craft more powerful research strategies.

This course will survey basic concepts of intellectual property and provide an introduction to a variety of types of intellectual property and IP-related rights, such as patents, copyright, trade secrets, trademarks, design rights, database rights, domain names, and demarcations of origin. The classroom sessions will include lively discussions of case studies of the management of IP and the resolution of IP-related problems in the process of technology commercialization. Each student will conduct an analysis of intellectual property issues related to his or her own Ph.D. research topic. Use will be made of special IP data and IP analytics tools.
2. Structure and Content

Course Academic Level	PhD-level
Number of ECTS credits | 6

<table>
<thead>
<tr>
<th>Topic</th>
<th>Summary of Topic</th>
<th>Lectures (# of hours)</th>
<th>Seminars (# of hours)</th>
<th>Labs (# of hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intellectual property and its role in technological innovation</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patents: Concepts</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patents: Practice</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyzing IP data for decision-making</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP Strategy Case Study: Biotechnology</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trademarks</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The IP Commercialization Process</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP Strategy Case Study: Consumer Products</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copyright and Digital Rights Management</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade Secrets</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Rights</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP Strategy Case Study: Manufacturing Technology</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contracts and the licensing of IP rights</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology commercialization & universities</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical standards and intellectual property</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP Strategy Case Study: Information Technology</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strategic management of intellectual property</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intellectual property and ethics</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology licensing negotiation</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Assignments
Assessment One: Written Analysis of Three Assigned Cases (30% of marks)

All students must submit an individually prepared written analysis of three case studies that will be discussed during the course: Radiant, LEGO and Tessera. Each submitted case analysis assignment will be worth 10% of the total marks for the course. Each written analysis should be about 1,000 words in length (but no more than 2,000 words) and must be submitted before the beginning of the classroom session when it will be discussed. Late submissions will not be accepted.

1A: Instructions for the Radiant Cosmetics Assignment:
Study the case and write an analysis of the case addressing the following four questions:
(i) What type or types of intellectual property rights may be used to protect each of the various components, both technical and non-technical, of the overall “Four Carat Pout” product of the Radiant Cosmetics Company?
(ii) What are the weaknesses and strengths of each type of intellectual property protection you have identified for each component of the product?
(iii) What IP-related factors ought to be considered in choosing a consumer-market strategy for the product?
(iv) What IP-related factors ought to be considered in choosing a national-launch strategy for the product?

1B: Instructions for the LEGO Assignment:
Study the case and write an analysis of the case addressing the following four questions:
(i) What are the arguments in favour of LEGO using patents to protect the new inventions coming out of their manufacturing process development work?
(ii) What are the arguments in favour of LEGO protecting the new inventions coming out of their manufacturing process development work as trade secrets?
(iii) What are the arguments in favour of LEGO publishing information about the new inventions coming out of their manufacturing process development work?
(iv) What is your recommendation as to how LEGO should drive its moulding platform and as to how it should protect its inventions or its freedom to operate?

1C: Instructions for the Tessera Technologies Assignment:
Study the case and write an analysis of the case addressing the following four questions:
(i) Consider the challenges Tessera faced in commercializing its chip scale packaging technology. What alternatives did Tessera have for monetizing these inventions?
(ii) Which of the alternative business models, if any, may have been practical and effective for Tessera to pursue?
(iii) How would a licensee view Tessera’s chip scale packaging technology over time, and what might be its motivations?
(iv) Do you think the silent air cooling technology is amenable to the same licensing model as the chip scale packaging or micro optics? Why or why not?
Assessment Two: Individual Intellectual Property Research Project (40% of marks)

Each student will conduct an individual research project in which the intellectual property dimensions of his or her own doctoral research project or field is identified and analyzed.

The analysis in the project may emanate from the unique features of the student’s own doctoral research topic or it may be concerned more generally with the academic domain of the student’s field of expertise. It may also relate, for example, to: the downstream commercialization potential of the student's research; to IP-driven factors in research project design; to theoretical issues related to the patentability of technical subject matter in the student’s own scientific or engineering discipline; to IP challenges associated with academic-industry relationships in the student’s field; or to competition and cooperation between research groups internationally the student’s field of research. Students should conduct an analysis that is intellectually interesting, that is potentially useful for their own primary doctoral research project, and that generates insight about strategy for technological innovation related to their doctoral research topic.

The key objective of the project will be to identify how taking intellectual property factors into account may inform the design, development and application of the student’s own doctoral thesis research. In other words, the project report for this course should contain insights, drawn from IP analytics, to help frame and focus the student’s own Ph.D. research project in a productive direction.

To assist in this work, Skoltech has obtained a license to the Cipher IP data and analytics service. Two sessions of the course will be devoted to understanding IP analytics (especially patent analytics) and its potential role in innovation strategy and to learning how to use Cipher as a research and decision-making tool. Those sessions will be led by Mr. Marcus Malek, the Head of Strategy, Aistemos Limited, the London-based organization responsible for the Cipher database, software and service.

In conducting research for the project report all students must make substantial use of the Cipher database and service. The research and analysis should include:
1. Analysis of the technology landscape related to the student’s field of doctoral research, making sure to map constituent technology fields, and technological trends;
2. Analysis of the range of companies, universities, institutes, other organizations and people active in the pertinent field, or fields, of technology. This analysis must include identifying changes in the relative positions of the players in the field over time, and identifying what proportion of the players in the field is represented by the dominant players and the non-dominant players, including individuals;
3. Analysis of the patenting strategies of key players in the field;
4. Analysis of the geographic distribution of technological activity in the field;
5. Analysis of litigation in the field, identifying which constituent fields of technology and which organizations are represented in litigation.
6. Analysis of key inventors in the field and their spread between universities and other organizations.
7. Analysis of collaboration and/or competition between key players (organizations and individuals) active in the field.

Assessment Three: Technology License Negotiation Exercise (30% of marks)

The learning experiences of the course will be applied in a Technology License Negotiation Exercise in the form of a game played over two days at the end of the term. One week after playing the game each team will make a live classroom presentation reviewing the process and results of its licensing negotiations and of the rationale for its approach adopted during the game. Each team will also be required to submit a written report covering the same subject matter as the classroom presentation and also including a discussion its members’ new insights about the overall subject matter of the course as a result of playing the game and their reflections about the lessons learnt from playing the game. The team report on the Technology License Negotiation Exercise will be due before midnight that same evening.

Licensing game: Amicon-Jackson-Hemoglobal

The written materials for the game—a case study of Amicon Corporation, Jackson Industries and Hemoglobal—plus detailed instructions for playing the game will be distributed to students during the course. Students will be divided into several sets of three teams. Each team member will need to study the game materials before the beginning of the game.

Each team’s scores will be based on the quality of its presentation and on the quality of the team report about the game. Twenty-five percent of the team grade for the activity will come from the classroom presentation and 75% will come from the submitted written report. Each student will receive an individual mark for his or her work in the Technology License Negotiation Exercise based on peer-review evaluations of his or her contribution to the teamwork. The Instructor will provide a grade to each team based on the quality of its work in the negotiation exercise as exhibited in its classroom presentation during the final session of the game and on the quality of the written team report about the Exercise.

Classroom Discussion of Negotiation Exercise

During the in-class analysis each team will review the process and the results of the Licensing Negotiation Exercise conducted over the weekend, together with the lessons learnt directly from the Exercise. The team will also reflect about how preparing to play the game, and playing the game, has enriched its member’s understanding of ideas, principles and insights gained from the readings, lectures, discussions and other learning experiences of the course.

Content of Live Classroom Presentation:
- report the results of the negotiation
- discuss whether and to what degree the results were successful (for your team)
- describe the process of the negotiation(s)
- discuss what insights you gained about the art of license negotiation
- review the strategy and tactics of your team.

Team Report on the Technology Licensing Game

Each team in the course is required to produce a written report based on the Licensing Game. The report should describe:
(i) What happened during the negotiation.
 (i.e., it should describe the process of the game)
(ii) The results of the negotiation, no matter whether or not a successful deal was reached.
 (If a successful deal was reached, discuss the terms that were concluded in the agreement.
 If your team was unsuccessful in reaching a deal, please explain why, making sure to identify both the advantages and disadvantages of the outcome.)
(iii) Lessons about the process of negotiating technology licenses that have been learnt from playing the game.
(iv) Discussion of fresh insights gained about the overall body of materials, ideas and principles covered during the course as a result reflecting about the process and results of the Negotiation Exercise.

The report should be written in prose, should be properly referenced and, while there is no minimum size for the report, it should be no longer than 5,000 words. Where appropriate, use may be made of pertinent reference materials other than those provided by the Instructor. A summary of preparations and planning conducted by the team prior to the commencement of the actual game (including supporting materials) may be included, if wished, as an appendix or appendices (not included within the 5,000-word limit). There is no size limit for the appendices to the report.

4. Grading
Graded

Grade Structure

<table>
<thead>
<tr>
<th>Activity Type</th>
<th>Activity weight, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework Assignments</td>
<td>30</td>
</tr>
<tr>
<td>Report</td>
<td>40</td>
</tr>
<tr>
<td>Final Project</td>
<td>30</td>
</tr>
</tbody>
</table>

Grading Scale

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>80</td>
</tr>
<tr>
<td>B</td>
<td>70</td>
</tr>
<tr>
<td>C</td>
<td>60</td>
</tr>
<tr>
<td>D</td>
<td>50</td>
</tr>
<tr>
<td>E</td>
<td>40</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
</tr>
</tbody>
</table>

Attendance Requirements

Mandatory

5. Basic Information

Maximum Number of Students

| Overall: | 36 |
| Per Group (for seminars and labs): | 6 |

Course Stream

Entrepreneurship and Innovation (E&I)

Course Term (in context of Academic Year)

Term 3

Course Delivery Frequency

Every year

Students of Which Programs do You Recommend to Consider this Course as an Elective?
6. Textbooks and Internet Resources

Recommended Textbooks

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Publisher</th>
<th>ISBN-13 (or ISBN-10)</th>
</tr>
</thead>
</table>

Papers

<table>
<thead>
<tr>
<th>Case</th>
<th>Author(s)</th>
<th>Publisher</th>
<th>DOI or URL</th>
</tr>
</thead>
</table>

Web-resources (links)

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Intellectual Property Organization</td>
</tr>
<tr>
<td>Russian Federation, Federal Service for Intellectual Property (Rospatent)</td>
</tr>
<tr>
<td>United States Patent and Trademark Office</td>
</tr>
<tr>
<td>European Patent Office</td>
</tr>
</tbody>
</table>
7. Facilities

8. Learning Outcomes

<table>
<thead>
<tr>
<th>Knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify, differentiate and understand the various types of intellectual property</td>
</tr>
<tr>
<td>Articulate and explain the role of intellectual property in technology commercialization and in the business and technology strategies of technology-intensive organizations</td>
</tr>
<tr>
<td>Identify and understand the potential impact of intellectual property on innovation associated with the student’s general academic, scientific or technological field</td>
</tr>
<tr>
<td>Understand the fundamentals of accumulating, managing, implementing and enforcing IP rights, as well as appropriating value from IP assets</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Skill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyze the intellectual property dimensions of the individual student’s particular doctoral research project or distinctive doctoral research domain</td>
</tr>
<tr>
<td>Identify intellectual property risks associated with technology commercialization</td>
</tr>
<tr>
<td>Know the fundamentals of designing and negotiating IP licenses</td>
</tr>
<tr>
<td>Apply IP data & IP analytics intelligently to the development of research & IP strategy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Think critically about the international dimension of IP management</td>
</tr>
<tr>
<td>Identify and analyze ethical and social issues associated with intellectual property</td>
</tr>
</tbody>
</table>

9. Assessment Criteria

Select Assignment 1 Type: Case Study

Input Example(s) of Assignment 1 (preferable)
Assessment One: Written Analysis of Three Assigned Cases (30% of marks)

All students must submit an individually prepared written analysis of three case studies that will be discussed during the course: Radiant, LEGO and Tessera. Each submitted case analysis assignment will be worth 10% of the total marks for the course. Each written analysis should be about 1,000 words in length (but no more than 2,000 words) and must be submitted before the beginning of the classroom session when it will be discussed. Late submissions will not be accepted.

1A: Instructions for the Radiant Cosmetics Assignment:
Study the case and write an analysis of the case addressing the following four questions:
(i) What type or types of intellectual property rights may be used to protect each of the various components, both technical and non-technical, of the overall “Four Carat Pout” product of the Radiant Cosmetics Company?
(ii) What are the weaknesses and strengths of each type of intellectual property protection you have identified for each component of the product?
(iii) What IP-related factors ought to be considered in choosing a consumer-market strategy for the product?
(iv) What IP-related factors ought to be considered in choosing a national-launch strategy for the product?

1B: Instructions for the LEGO Assignment:
Study the case and write an analysis of the case addressing the following four questions:
(i) What are the arguments in favour of LEGO using patents to protect the new inventions coming out of their manufacturing process development work?
(ii) What are the arguments in favour of LEGO protecting the new inventions coming out of their manufacturing process development work as trade secrets?
(iii) What are the arguments in favour of LEGO publishing information about the new inventions coming out of their manufacturing process development work?
(iv) What is your recommendation as to how LEGO should drive its moulding platform and as to how it should protect its inventions or its freedom to operate?

1C: Instructions for the Tessera Technologies Assignment:
Study the case and write an analysis of the case addressing the following four questions:
(i) Consider the challenges Tessera faced in commercializing its chip scale packaging technology. What alternatives did Tessera have for monetizing these inventions?
(ii) Which of the alternative business models, if any, may have been practical and effective for Tessera to pursue?
(iii) How would a licensee view Tessera’s chip scale packaging technology over time, and what might be its motivations?
(iv) Do you think the silent air cooling technology is amenable to the same licensing model as the chip scale packaging or micro optics? Why or why not?
Evaluation Criteria for Assignments 1A, 1B and 1C:
The following scoring system will be used to evaluate all three case-analysis assignments:
1. Depth of analysis and quality of thinking in addressing the first question (10%)
2. Depth of analysis and quality of thinking in addressing the second question (10%)
3. Depth of analysis and quality of thinking in addressing the third question (10%)
4. Depth of analysis and quality of thinking in addressing the fourth question (10%)
5. Structure, overall logic and coherence of analysis (10%)
6. Conceptual richness and intellectual contribution of analysis (10%)
7. Presentation of evidence from the case to justify arguments (10%)
8. Rigor and depth of arguments, strength & elegance of logic (10%)
9. Grammar, spelling, syntax, writing style and presentation of document (10%)
10. Evidence of distinctive excellence (10%)
Each assignment will be graded on a 100-point scale.
Assessment Two: Individual Intellectual Property Research Project (40% of marks)

Each student will conduct an individual research project in which the intellectual property dimensions of his or her own doctoral research project or field is identified and analyzed.

The analysis in the project may emanate from the unique features of the student’s own doctoral research topic or it may be concerned more generally with the academic domain of the student’s field of expertise. It may also relate, for example, to: the downstream commercialization potential of the student’s research; to IP-driven factors in research project design; to theoretical issues related to the patentability of technical subject matter in the student’s own scientific or engineering discipline; to IP challenges associated with academic-industry relationships in the student’s field; or to competition and cooperation between research groups internationally the student’s field of research. Students should conduct an analysis that is intellectually interesting, that is potentially useful for their own primary doctoral research project, and that generates insight about strategy for technological innovation related to their doctoral research topic.

The key objective of the project will be to identify how taking intellectual property factors into account may inform the design, development and application of the of the student’s own doctoral thesis research. In other words, the project report for this course should contain insights, drawn from IP analytics, to help frame and focus the student’s own Ph.D. research project in a productive direction.

To assist in this work, Skoltech has obtained a license to the Cipher IP data and analytics service. Two sessions of the course will be devoted to understanding IP analytics (especially patent analytics) and its potential role in innovation strategy and to learning how to use Cipher as a research and decision-making tool. Those sessions will be led by Mr. Marcus Malek, the Head of Strategy, Aistemos Limited, the London-based organization responsible the Cipher database, software and service.

In conducting research for the project report all students must make substantial use of the Cipher database and service. The research and analysis should include:

1. Analysis of the technology landscape related to the student’s field of doctoral research, making sure to map constituent technology fields, and technological trends;
2. Analysis of the range of companies, universities, institutes, other organizations and people active in the pertinent field, or fields, of technology. This analysis must include identifying changes in the relative positions of the players in the field over time, and identifying what proportion of the players in the field is represented by the dominant players and the non-dominant players, including individuals;
3. Analysis of the patenting strategies of key players in the field;
4. Analysis of the geographic distribution of technological activity in the field;
5. Analysis of litigation in the field, identifying which constituent fields of technology and which organizations are represented in litigation.
6. Analysis of key inventors in the field and their spread between universities and other organizations.
7. Analysis of collaboration and/or competition between key players (organizations and individuals) active in the field.
Assessment Criteria for Assignment 2

The following scoring system will be used to evaluate the project report:

1. Clarity and succinctness of statement of the topic and subject matter (10%)
2. Articulation of the main research question (10%)
3. Rigor and comprehensiveness of the literature survey (10%)
4. Depth and clarity of articulated theory (10%)
5. Appropriateness and quality of expression of the research methodology (10%)
6. Rigor and depth of implementation of research methodology (10%)
7. Depth, structure, coherence and detailed rigor of arguments and analysis (10%)
8. Presentation of evidence to justify claims and arguments (10%)
9. Grammar, spelling, syntax, writing style and presentation of document (10%)
10. Evidence of distinctive excellence or profundity of work for the project (10%)

The paper will be graded on a 100-point scale. Each assessment criterion for the paper will be scored on a 100-point scale.

Input or Upload Example(s) of Assignment 3:

Select Assignment 3 Type
Team Project

Input Example(s) of Assignment 3 (preferable)
Assessment Three: Technology License Negotiation Exercise (30% of marks)

The learning experiences of the course will be applied in a Technology License Negotiation Exercise in the form of a game played over two days at the end of the term. One week after playing the game each team will make a live classroom presentation reviewing the process and results of its licensing negotiations and of the rationale for its approach adopted during the game. Each team will also be required to submit a written report covering the same subject matter as the classroom presentation and also including a discussion its members’ new insights about the overall subject matter of the course as a result of playing the game and their reflections about the lessons learnt from playing the game. The team report on the Technology License Negotiation Exercise will be due before midnight that same evening.

Licensing game: Amicon-Jackson-Hemoglobal
Based on the Amicon Corporation case authored by Noel Capon and E. Raymond Corey.
HBS case product number: 9-579-093.

The written materials for the game—a case study of Amicon Corporation, Jackson Industries and Hemoglobal—plus detailed instructions for playing the game will be distributed to students during the course. Students will be divided in to several sets of three teams. Each team member will need to study the game materials before the beginning of the game.

Each team’s scores will be based on the quality of its presentation and on the quality of the team report about the game. Twenty five percent of the team grade for the activity will come from the classroom presentation and 75% will come from the submitted written report. Each student will receive an individual mark for his or her work in the Technology License Negotiation Exercise based on peer-review evaluations of his or her
contribution to the teamwork. The Instructor will provide a grade to each team based on the quality of its work in the negotiation exercise as exhibited in its classroom presentation during the final session of the game and on the quality of the written team report about the Exercise.

Classroom Discussion of Negotiation Exercise

During the in-class analysis each team will review the process and the results of the Licensing Negotiation Exercise conducted over the weekend, together with the lessons learnt directly from the Exercise. The team will also reflect about how preparing to play the game, and playing the game, has enriched its member’s understanding of ideas, principles and insights gained from the readings, lectures, discussions and other learning experiences of the course.

Content of Live Classroom Presentation:
- report the results of the negotiation
- discuss whether and to what degree the results were successful (for your team)
- describe the process of the negotiation(s)
- discuss what insights you gained about the art of license negotiation
- review the strategy and tactics of your team.

Team Report on the Technology Licensing Game

Each team in the course is required to produce a written report based on the Licensing Game. The report should describe:
(i) What happened during the negotiation.
(i.e., it should describe the process of the game)
(ii) The results of the negotiation, no matter whether or not a successful deal was reached.
(If a successful deal was reached, discuss the terms that were concluded in the agreement. If your team was unsuccessful in reaching a deal, please explain why, making sure to identify both the advantages and disadvantages of the outcome.)
(iii) Lessons about the process of negotiating technology licenses that have been learnt from playing the game.
(iv) Discussion of fresh insights gained about the overall body of materials, ideas and principles covered during the course as a result reflecting about the process and results of the Negotiation Exercise.

The report should be written in prose, should be properly referenced and, while there is no minimum size for the report, it should be no longer than 5,000 words. Where appropriate, use may be made of pertinent reference materials other than those provided by the Instructor. A summary of preparations and planning conducted by the team prior to the commencement of the actual game (including supporting materials) may be included, if wished, as an appendix or appendices (not included within the 5,000-word limit). There is no size limit for the appendices to the report.

Assessment Criteria for Assignment 3
Evaluation Criteria for the Classroom Presentation on the Licensing Game

1. Depth and rigor of understanding of case material and issues (20%)
2. Depth of preparation for the negotiation revealed through the presentation (20%)
3. Quality of engagement in the game revealed through the presentation (20%)
4. Degree of group cooperation revealed through the presentation (20%)
5. Quality and depth of insights gained through playing the game (20%)

Evaluation Criteria for the Team Report on the Licensing Game

The following scoring system will be used to evaluate the team report:
1. Thoroughness of the team’s preparation for the game (10%)
2. Quality of description of the process of the game (10%)
3. Comprehensiveness of the license terms (either accepted or rejected) (10%)
4. Level of strategy exhibited in playing the game (10%)
5. Creativity exhibited during planning and negotiations (10%)
6. Quality of explanation of the outcome of the negotiations (10%)
7. Rationale for how the final result was valuable for the team (10%)
8. Lessons learned about the process of negotiating licenses (10%)
9. Quality of insights about course content from reflecting about the game (10%)
10. Overall quality, rigor and excellence of the report (10%)

Peer Evaluation of Individual Participation in the License Negotiation Exercise

Each individual student will receive a mark for the Assessment Three (the Technology License Negotiation Exercise) based on the team grade, weighted by a confidential peer-review assessment of his or her individual contribution to the team’s work.

A special form on which the confidential peer-review scores may be indicated will be distributed to each student by the Instructor (via Canvas). In other words, one single mark will be allocated to each team for each team activity, but the final mark that each individual team member will receive will be weighted according to peer evaluations from fellow team members. The information provided in the peer evaluations will be kept absolutely confidential.

Each student in the course will be required to evaluate each of his or her fellow team members for their contribution to the team activities. It is compulsory. Failure to submit a peer evaluation will lead to an F grade (“Fail”) grade for the course.

Input or Upload Example(s) of Assignment 4:

Input or Upload Example(s) of Assignment 5:

10. Additional Notes
Recommended Allocation of Time to Learning Activities

Activity Time Allocation
- Lectures, case discussions & other classroom activities 51 hours
- Reading and preparatory analysis of first case 10 hours
- Reading and preparatory analysis of second case 10 hours
- Reading and preparatory analysis of third case 10 hours
- Individual intellectual property research project 45 hours
- Advanced preparation for licensing negotiation exercise 16 hours
- Engaging in licensing negotiation exercise 13 hours
- Classroom presentation of results of negotiation exercise 3 hours
- Individual contribution to licensing negotiation team report 4 hours
- Total expected work time for the course 162 hours

Learning Activities
The learning in this course will take place through a combination of:

- classroom lectures
- study of readings and cases
- lively classroom discussions of lecture material
- classroom-discussion of cases
- a team-based negotiation game (to be played during the last week of the term)
- classroom presentation of team project results
- lectures and exercises in the use of patent data and patent analytics tools
- an individual research project exploring and analyzing the intellectual property aspects of the student’s doctoral research.

Team Activities

Team-based activities will play a substantial role in learning for this course. During the first week of the term all students will be divided into teams for the Technology License Negotiation Exercise project. An individual grade will be allocated to each student for his or her contribution to the team project based on an individual weight applied to the team grade derived from confidential peer reviews of each student’s contribution to the team’s work. This is intended to provide an incentive for all students to contribute responsibly and adequately to team activities; and it will assist in ensuring that all team members receive a fair grade. Each team member will be expected to contribute equitably to his or her team’s work. All students will be required to participate in the formal peer-assessment process that will take place at the end of the term.

Academic Integrity

All assignments submitted during this course must be original and prepared specifically for this course. Plagiarism is not permitted and will not be tolerated. Assignments will be checked to ensure academic integrity.

Classroom Attendance and Participation

In accordance with Skoltech’s policy, attendance in scheduled classroom sessions is compulsory. Regular attendance, and active participation in classroom discussions, will be an important part of the learning process, and will help you to contribute appropriately to the work of your team. Special permission from the instructor will be required to be excused.
from a classroom session. Penalties will apply to students who miss class without permission. Please note that penalties from missing class without permission will be serious enough to have a substantive effect on your final letter-grade for the course.