1. Annotation

Course Description

Dynamical systems in our course will be presented mainly not as an independent branch of mathematics but as a very powerful tool that can be applied in geometry, topology, probability, analysis, number theory and physics. We consciously decided to sacrifice some classical chapters of ergodic theory and to introduce the most important dynamical notions and ideas in the geometric and topological context already intuitively familiar to our audience. As a compensation, we will show applications of dynamics to important problems in other mathematical disciplines. We hope to arrive at the end of the course to the most recent advances in dynamics and geometry and to present (at least informally) some of results of A. Avila, A. Eskin, M. Kontsevich, M. Mirzakhani, G. Margulis.

In accordance with this strategy, the course comprises several blocks closely related to each other. The first three of them (including very short introduction) are mainly mandatory. The decision, which of the topics listed below these three blocks would depend on the background and interests of the audience.

Course Prerequisites / Recommendations

We expect our audience to be familiar with basic differential geometry, basic topology and basic measure theory.
Course Academic Level

Master-level course suitable for PhD students

Number of ECTS credits

6

<table>
<thead>
<tr>
<th>Topic</th>
<th>Summary of Topic</th>
<th>Lectures (# of hours)</th>
<th>Seminars (# of hours)</th>
<th>Labs (# of hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>We will introduce dynamical systems using the most elementary examples — rotation of the circle and continued fractions.</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
| **Dynamics and geometry** | In this part we will check how dynamical methods can be used to study one of the most classical notions of differential geometry — geodesics on surfaces of negative curvature. Here is our approximate plan:
(1) Introduction to hyperbolic geometry. Möbius transformations. Fuchsian groups.
(2) The eight geometries of the geometrization conjecture by W. Thurston.
(3) Geodesics on surfaces of negative curvature. The geodesic flow and its properties.
(4) Geodesic flow on modular curve as a continued fraction map.
(5) Teichmüller space. Teichmüller geodesic flow.
(6) Counting of simple closed geodesics: results by M. Mirzakhani. | 4 | 16 | |
| **Dynamics and topology** | In this part we stay again on a Riemann surface but now we would like to have an almost flat metrics on it and to consider related geodesic flow (equivalently, we study measured foliations on such a surface). The purpose of this block is to make a crash course in ergodic theory with a topological interpretation of the main notions and results. The plan is as follows:
(1) Interval exchange transformations (IET) as natural generalizations of continued fractions.
(2) IET as the first return maps on transversal for measured foliations on oriented surface. Poincaré recurrence theorem.
(3) Key ergodic properties: minimality, ergodicity, number of invariant measures (illustrated by IET).
(4) Multiplicative ergodic theorem. Topological interpretation of Lyapunov exponents. Sums of Lyapunov exponents as uniform bounds for degrees of holomorphic subbundles.
(5) Anosov and Pseudoanosov diffeomorphisms of surfaces. Introduction to hyperbolic dynamics (Markov partitions, invariant measures etc).
(7) * Action of $GL(2, \mathbb{R})$ on the moduli space of Abelian differentials. Ehrenfest wind-tree model of Boltzmann gas. | 4 | 16 | |
| **Dynamics and number theory**| This block (that can be chosen by our auditory) is dedicated to homogeneous dynamics and its applications to famous conjectures in number theory, such as Oppenheim conjecture (solved) and Littlewood conjecture (still open). We mainly will follow G. Margulis work in this direction. | 2 | 8 | |
Dynamics and analysis.
This block can be more interesting for future specialists in mathematical physics and numerical analysis. We plan to discuss the notion of transfer operator and its spectral gap, Perron-Frobenius theorem and its generalization by D. Ruelle, zeta-function and its interpretation in terms of transfer operator.

Dynamics and probability.
This block is dedicated to thermodynamical formalism and its application for dynamical systems. We discuss beautiful ideas by R. Dobrushin, on the one hand, and R. Bowen — on the other, and show how to find Gibbs measures for dynamical systems that can be presented as a symbolic shift.

<table>
<thead>
<tr>
<th>Assignment Type</th>
<th>Assignment Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem Set</td>
<td>The students will be given a list of problems that cover the course and are supposed to show their understanding of basic notions and ability to use main technical tools.</td>
</tr>
<tr>
<td>Project</td>
<td>The students will be given some research papers from the field (both modern and classical) and will try to present it to their colleagues. In order to get the highest mark students are supposed to show their deep understanding of the subject of the given papers as well as ability to explain it to other people in the audience. We will also take into consideration the level of independence in the choice of the subject as well as quality and amount of the used sources.</td>
</tr>
</tbody>
</table>

3. Assignments

4. Grading

Type of Assessment
Graded

Grade Structure

<table>
<thead>
<tr>
<th>Activity Type</th>
<th>Activity weight, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projects</td>
<td>60</td>
</tr>
<tr>
<td>Final Exam</td>
<td>40</td>
</tr>
</tbody>
</table>

Grading Scale

<table>
<thead>
<tr>
<th>Grade</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>86</td>
</tr>
<tr>
<td>B</td>
<td>76</td>
</tr>
<tr>
<td>C</td>
<td>66</td>
</tr>
<tr>
<td>D</td>
<td>56</td>
</tr>
<tr>
<td>E</td>
<td>46</td>
</tr>
</tbody>
</table>
5. Basic Information

Maximum Number of Students

<table>
<thead>
<tr>
<th></th>
<th>Maximum Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall:</td>
<td>50</td>
</tr>
<tr>
<td>Per Group (for seminars and labs):</td>
<td>30</td>
</tr>
</tbody>
</table>

Course Stream

Science, Technology and Engineering (STE)

Course Term (in context of Academic Year)

Term 3
Term 4

Course Delivery Frequency

Every year

Students of Which Programs do You Recommend to Consider this Course as an Elective?

<table>
<thead>
<tr>
<th>Masters Programs</th>
<th>PhD Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical and Theoretical Physics</td>
<td>Mathematics and Mechanics Physics</td>
</tr>
</tbody>
</table>

Course Tags

Math

6. Textbooks and Internet Resources

Required Textbooks

<table>
<thead>
<tr>
<th>Required Textbooks</th>
<th>ISBN-13 (or ISBN-10)</th>
</tr>
</thead>
</table>
Recommended Textbooks

<table>
<thead>
<tr>
<th>Recommended Textbooks</th>
<th>ISBN-13 (or ISBN-10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. Dal'bo, Geodesic and Horocyclic trajectories, Springer Urtext (2011).</td>
<td>9780857290731</td>
</tr>
<tr>
<td>B. Farb, D. Margalit, A primer on mapping class group</td>
<td>9780691147949</td>
</tr>
<tr>
<td>A. Katok, B. Hasselblat, A first course in dynamics : with a panorama of recent developments</td>
<td>0521587506</td>
</tr>
</tbody>
</table>

Web-resources (links)

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecture notes by Fields medalist Jean-Christophe Yoccoz on interval exchange transformations and related aspects of ergodic theory</td>
</tr>
<tr>
<td>Lecture notes by Grigory Margulis on Number theory and homogeneous dynamics</td>
</tr>
<tr>
<td>Lecture notes by Omri Sarig on thermodynamical formalism for countable Markov shift</td>
</tr>
<tr>
<td>Lecture notes by Omri Sarig on transfer operators</td>
</tr>
</tbody>
</table>

7. Facilities

8. Learning Outcomes
Knowledge

Students will be introduced to some classical results as well as the most modern achievements in dynamical systems and will learn how to apply these results in other branches of mathematics, for example, in geometry, topology, probability and number theory.

Skill

Students are supposed to become familiar with the most advanced techniques that are applied in dynamical systems.

Experience

Students will read and understand deeply plenty of celebrated papers in dynamics. Some of the materials we are supposed to study were mentioned by the Fields committee as a main motivation to award the Fields medal in the last few decades.

9. Assessment Criteria

Input or Upload Example(s) of Assignment 1:

<table>
<thead>
<tr>
<th>Select Assignment 1 Type</th>
<th>Problem Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Or Upload Example(s) of Assignment 1</td>
<td>link</td>
</tr>
</tbody>
</table>

Assessment Criteria for Assignment 1

In order to get the full score for a given problem the student should calculate correctly both the genus of the surface and the number of zeros of the form. If the student knows the idea but is not able to provide the precise calculation, half of scores can be given. If no correct approach to the problem was suggested, 0 score is given.

Input or Upload Example(s) of Assignment 2:

<table>
<thead>
<tr>
<th>Select Assignment 2 Type</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Or Upload Example(s) of Assignment 2</td>
<td>link</td>
</tr>
</tbody>
</table>

Assessment Criteria for Assignment 2

The student should present a summary of the paper at our problem solving class in front of other students and professors. If the student shows reasonable level of understanding of the problem, it is enough to complete the assignment.

Input or Upload Example(s) of Assignment 3:

Input or Upload Example(s) of Assignment 4:

Input or Upload Example(s) of Assignment 5:
This year I plan to teach this course with some contribution of my colleagues - Sergey Lando and Anton Zorich. Their names should be also added to the syllabus somehow (even if most part of lectures will be delivered by myself).